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Abstract. Despite significant work since the original paper by H Furstenberg in the early 60s. 
explicit formulae for Lyapunov exponents of infinite products of random matrices we available 
only in a very few cases. 

In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary 
infinite products of random 2 x 2 real matrices. All these products are constructed using only 
two types of matrices, A and B, which are chosen according to a stochastic process. The matrix 
A is singular, namely its determinant is zero. This formula is derived by using a particular 
decomposition for the matrix 8, which allows us IO write the Lyapunov exponent as n sum of 
convergent series. The key point is the computation of all the integer powers of 8, which is 
achieved by a suitable change of frame. The computation then follows by lwking at each of 
the special types of B (hyperbolic, parabolic and elliptic). Finally. we show. with an example, 
that the Lyapunov exponent is a discontinuous function of the given parameter. 

1. Introduch-on 

The product of random matrices appears in the study of disordered systems [ 11 as well as 
in the context of dynamical systems [2]. The Lyapunov exponents are one of the tools 
to study these products. They are related to physical quantities in disordered systems [3]. 
For example, in the tight-binding model or Anderson model [3], the localization length of 
the wavefunction is proportional to the inverse of the Lyapunov exponent. In dynamical 
systems theory, products of random matrices often arise as a non-hivial approximation 
which strongly mimics chaotic behaviour in deterministic system. 

In spite of important and numerous results obtained in the theory of random matrices 
[MI, there is no general method for calculating the Lyapunov exponents 17-91, although 
for a few examples there is an explicit formula [IO, 111. 

In this paper, we present some examples of products of random matrices, where we 
were able to determine the Lyapunov exponents as a sum of explicitly convergent series. In 
all these examples, we deal with infinite binary random products, built with only two types 
of 2 x 2 real matrices, A and B ,  which are chosen according to a stochastic Bernoulli or 
Markovian process and one of the matrices. say A,  is singular, i.e. its determinant is zero. 
Markovian processes are chosen to mimic the correlations existing in dynamical systems 
exhibiting weak chaos [12]. The key to our study is the use of a particular decomposition 
when the mahix B is non-singular (but if B is singular, the calculation can be done 
directly). The Bernoulli case was studied by Pincus [13], who gave asymptotic results 
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for the Lyapunov exponent, see (2.6) which, however. do not enable an actual computation; 
see remark 2 3  below (also Derrida and Hilhorst [ 141 have obtained a similar formula for a 
particular product). Instead, we give an explicit form of the terms of that series. The key 
point is the computation, for all powers E" (n > I), of the matrix E of the corresponding 
entries bjj(n). This is achieved using a normal form given by (4.1) in each case of interest, 
(4.10) and (4.11). In some cases, this permits either an explicit summation of the series, 
or a control of the convergence, therefore leading to approximate results. Furthermore. we 
could show that the convergence of the series is exponentially fast. 

The Markovian products are treated using (2.7), a formula that generalizes the 
corresponding formula of Pincus, (2.6). 

This paper is organized as follows. In section 2, we derive the general formula for 
the largest Lyapunov exponent y .  Section 3 is devoted to the simple case where E is a 
singular matrix. In section 4 we perform the decomposition of B which, in turn, leads to 
the decompostion of E" and in section 5 we derive the expression of y .  In the last section, 
we analyse the continuity of y as a function of parameters. 

R Lima and M Rahibe 

2. Lyapunov exponent, general formula 

We consider A and E, 2 x 2 real matrices, where A is a singular matrix. Now let PN, 
PN = XNXN-I . . . XzXi 

be a binary product of N matrices, where the matrix Xi is either A or E ,  the choice being 
made by a stochastic process. In the Bernoulli case, we have Xi = A with probability p 
(0 e p e 1) and Xi = E with probability q = 1 - p (i 2 1). In the Markovian case, the 
transition probabilities are given by 

Pr(X.+l = A/X, = E )  = PI Pr(X,+l = E/X. = A) = p z  
(2.1) 

Pr(Xn+t = E/Xn E )  = 1 - pi = 41 Pr(Xn+i = A / X n  = A) = 1 - pz = qz 

and 

(2.2) PZ 
PI f PZ 

PO Pr(X1 = A )  = - = Pr(X1 = B )  = - = qo PI 
PI f P2 

with 0 e < 1 and 0 < p2 c 1. 
By definition, the Lyapunov exponent y is 

y is independent of the choice of the norm I1 , 11. 

following forms: 
Since the matrix A is singular, it can be written by a change of basis in one of the 

A = ( :  :) 
or 

A = ( :  :). (2.5) 



Exact Lyapunov exponent 3429 

If A is of the type (2.5), the Lyapunov exponent is y = -m. This is straightforward 

Therefore we suppose, without loss of generality, that A has the form (2.4), i.e. 

If we write 5" in the form 5" = 

to show, since A2 = 0. 

A = (t :), 
in the Bernoulli case, follows: 

, then the result obtained by Pincus [13], 

where p2(1 - , p ) "  is the probability to obtain the subproduct A P A .  Even if (2.6) were 
proved only in the Bernoulli case [13], the same argument extends to the Markovian case, 
leading to the following proposition. 

Proposition 2.1. Let [ P N )  be an infinite product of random matrices satisfying the 
Markovian distribution law (2.1) and (2.2), where A is a singular matrix given by (2.4) 
and 5 is general. 

Then 

where b l l ( n )  will be explicitly computed in section 4. 

Remark 2.2. The proof of this proposition is analogous to that given in [ 131 once we notice 
that the probability to find the product A 5 " A  is pop~q;-~pz in the Markovian case whereas 
it is p2(1 - p)" in the Bernoulli case. 

Remark 2.3. Notice that, in order to give an explicit value for y ,  from (2.6) for the 
Bernoulli case or (2.7) for the Markovian case, the key point is the computation of b l l ( n ) ,  
a problem which was not addressed in [13]. This is the object of the next sections 

According to (2.7), it is possible to study the Bernoulli and the Markovian cases in the 
same manner, by writing 

where 

in the Bernoulli case, and 

x =41 
PI L = -  P:P? Pr(A) = ~ 

PI + P2 PI +Pz 
(2.10) 

in the Markovian case. 
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3. The case of two singular matrices 

In the case where B is singular, it is easy to calculate bll(n).  Indeed, as explained above, 
we have two different cases, either 

R Lima and M Rahibe 

or 

where Q is an invertible matrix and Q-' is its inverse. 
In the former case y = -co, by the same argument as when A is given by (2.5). . 
In the latter case, if Q is written as Q = (:;; ;::), then we have, for n > I ,  

bll (n)  = A ~ " q 1 l q ~ .  And it is then easy to obtain y ;  for a Bernoulli product, we have 

Y = YB = flog IAl 4- (1 - P) log 1Abl-I- P (1 - P) 1% l&$jl (3.1) 

and for a Markovian product, we have 

y = y M = -  

where bll denotes the first entry of the matrix B ,  and Tr(B) is the trace of B. 

commutativity of the matrices A and B.  

4. Normal form and computation of B" 

When B is non-singular, we introduce a decomposition, which enables us to determine 
bll(n) for all positive integers n. 

log IAI + - PZ 1% l i b 1  + - PIP2 loglb"l 
PI + P2 PI t PZ PI +P? Tr(B) 

(3.2) PI 

In the formulae (3.1) and (3.2), we notice a nonlinear term, originating in the non- 

Let B be a real, non-singular 2 x 2 matrix, which we write as 
B = I del BlR(-v,)BR(v,) (4.1) 

where det B is the determinant of B ,  'R(v,) = kyz $') is a matrix rotation in the plane 
with an angle v, and R(-v,) is its inverse. The angle v, is determined by 

where bij are the entries of B.  
We call the matrix B, the normal form of B.  We have four different types of normal 

forms 8, depending on the sign of the determinant and on the eigenvalues of B ,  which can 
be real, non-degenerated eigenvalues, real degenerated eigenvalues and conjugate complex 
eigenvalues. 

We now define the quantity 

where 

and 

p will be used in the expression of B. 

I 1  = b12 sin2@) - 9 1  cos2(v,) + ;(bll- b u )  sin(2y) 

12 = b~zcos~(v , )  - 621 sin2(v,) - i(bll  - bn)sin(2v,) 

(4.3) 
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Remark 4.1. Replacing B by C = (l/detB)B, accroding to (2.3). y is shifted by 
an additive constant, Pr(B) log I det BI, where Pr(B) is the probability of the matrix B .  
Therefore, we can assume without loss of generality, that I det BI = 1. 

We now consider four different cases. 

Case I: B is hyperbolic symplectic 
The eigenvalues of B are real, non-degenerate and have the same sign, Al.2 = ~ e x p f u  
with U non-zero and E = 1 or - 1 ; then, we get 

coshu psinhu 
B = E  (;mho 1 .  coshu (4.4) 

Case Ii: B is hyperbolic, non-symplectic 
In this case the eigenvalues of B are also real, non-degenerate but they have opposite signs, 
namely A I  = expo and A2 = -exp -U or -A, and -Al. Although we have two possible 
forms for B, we can deduce one from the other by changing the sign of (o. We therefore 
retain only one form for L? 

sinhu pcosho 
B=( - 1 coshu sinhu 

P 

Case III: B is parabolic 
The eigenvalues of B are given by A1.2 = E, (E = 1 or -1) and we have either 

or 

1 El* 
B = c ( o  1 )  

(4.5) 

(4.6) 

(4.7) 

Notice that we can pass from (4.7) to (4.6) by a rotation in the plane with an angle 
x/2. In the following, we define the normal form of a parabolic matrix as given by (4.6). 

Case N: B is elliptic 
The eigenvalues of B are complex conjugate, A L , ~  = expiziu, in which case 

~ = ( cosu -psinu 
Lsinu cosu 
P 

(4.8) 

Therefore, if 5 is a non-singular matrix, we can write it in the form given by (4.1) 

We can now easily compute B" in each of the previous cases. We summarize the result 
where B is given by one of the expressions (4.4), (4.5), (4.6) or (4.8). 

in the following proposition. 
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Proposition 4.2. Let B be a non-singular ma@ix with a normal form B defined by (4.1). 

R Lima and A4 Rahibe 

Then 

B" = R(-cp)B"R(cp). (4.9) 

If B is symplectic hyperbolic, given by ( 4 4 ,  then 

Lsinhno coshno 
an = E" ( Y h n o  psinhno 

If B is non-symplectic hyperbolic, given by (4.9, then either 

cosh no p sinh no 
- sinhno coshno 
P 

if n is odd; or 

sinhno p cosh nu '" = (i coshno sinhno 
P 

if n is even. 
If B is parabolic, given by (4.6). then 

B"=..(, 1 ne"l2 ) .  
If B is elliptic, given by (4.8), then 

a. = ( cosno -psinno 
1 sinnu cosno 
P 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

(4.14) 

5. Lyapunov exponent: explicit formulae 

We are now ready to perform the analysis of the formula (2.8) in the case where the matrix 
B is non-singular. 

As previously, without loss of generality, we suppose that ldet BI = 1. 
We now give the value of the largest Lyapunov exponent in each of the four cases 

treated in the previous section. 

Case I: B is a hyperbolic symplectic matrix 
For n 2 1, we have 

b11(n) = c"[cosh(no) + cosh(0r) sinh(no) sin(&)] 

where 
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In (5.1). we can take U z 0. Indeed, if U is negative, we change the sign of p and use 

Notice first that if there exists an integer no > 1 such that bll(n0) = 0 then y = -w. 
The condition 61 I (no) = 0 is equivalent to 

-U instead of U. 

I 
cosha = - , 

sm(2q) tanh(n0u) 

and therefore we can construct some products for which y = -m. 

the quantities 
On the contrary, if we suppose that for all integers n 2 1, b l l ( n )  # 0, and we define 

S = 1 + sin(2p) cosh@) (5.3) 

and 

1 - sin(2p) cosh@) 
1 + sin(Zp)cosh(ry) ' 

r =  

We will use T and 6 in the expression of y .  
We now distinguish two cases. 

(a) 6 = 0. A straightforward calculation gives 

y = = plog [AI - (1 - p)u 

for the Lyapunov exponent in the Bernoulli case, and 

y=yM=- p' l0gp.I - - pz a 
Pl + P2 PI +P2 

(5.4) 

(5.6) 

for the Markovian case. 

(b)  6 # 0. Depending on whether T is zero or not, we have different expressions for y .  
(i) s = 0: we easily obtain the largest Lyapunov exponent for a Bernoulli product: 

y = YB = p log ] A I +  (1 - p ) ~  (5.7) 

and for a Markovian product: 

log IN+ - pz 0 
PI y=yM=- 

PI + P2 PI + P2 
(5.8) 

(ii) T # 0 : Here we obtain y as a convergent series given by 

(5.9) 
L 161 

U + - log- + L E x " - '  log11 + Te-ZnvI 
L 

y = Pr(A) log IAl+ - 
( 1 - X ) Z  I - x  2 n=1 

where L is defined by (2.9) and (2.10). 
Notice that if y~ is the sum of the N t h  first terms in (5.9) of y ,  the error is 

1)' - yNI < [Tlexp(-2(N + l ) u ) L X N f l  (5.10) 
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and therefore it is exponentially small since 0 .c x c 1. 

Case II: B is a hyperbolic no-symplectic matrix 
This case is similar to the previous one with only a slight difference concerning (5.9). By 
applying the decomposition given by (4.1) we obtain 

R Limn and M Rahibe 

1 + sin(2q) cosh@) 1 - sin(2q)cosh(or) - " ~  
e 

2 
e*a + 

2 bii(n) = (5.11) 

Again, we can suppose that U z 0 without loss of generality. And, as above, if there 

Recall that 6 and r are defined by (5.3) and (5.4). 
If S = 0 or if 6 # 0 but r = 0, the largest Lyapunov exponent is given by the same 

Instead, if S $1 0 and r # 0. we obtain 

exists an no 2 1 such that b1r(2no) = 0 or bil(2no - 1) = 0, then y = -cu. 

expressions as in the previous case: (5.5) and (5.6), or (5.7) and (5.8). 

(5.12) 

This series is convergent, indeed we have 

N+1* I?'-yNI<LX (5.13) 

Case Ill: B is a parabolic matrix 
The normal form of B is 

and thus, for n 2 1, 

bll(n) = e n [ l  +fnbsin(Zq)]. (5.15) 

We suppose that bll # 0 for all integers n > 1. The trivial case where sin(2p) = 0 
corresponds to an infinite product of diagonal and triangular matrices. In this case, 

y = Pr(A) log Jhl . 
When, instead, sin(2p) f 0, we have, for a Bernoulli product, 

(5.16) 
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and, for a Markovian product, 

PI P2 1 bsil(2rp) 1 loglbl+ - 
PI + P2 

PI y=- 
PI + P2 

These series are convergent since we have 

(5.17) 

(5.18) 

a n d O < x < I  

Case W: B is an elliptic matrix 
In this case we also obtain series for y .  but it  is very difficult, in general, to evaluate the rest 
of the corresponding partial sums. Indeed, in this situation, as expected, the summability of 
the series in the expression of y is related to the arithmetic properties of U ,  when the latter 
is irrational (mod 2%). On the another hand, if U is rational (mod 2%). y may be given 
as a sum of a finite number of terms. 

As above, by using the decomposition (4.1), we obtain 

b11 (n)  = cos(nu) + sinh(cu) sin(no) sin(2p) (5.19) 

where 

(5.20) 

with 01 E W. 
If bll(no) = 0 for some positive integer no. then y = -w. 
Suppose now that bll(n) # 0, for all positive integers n, and U is rational (mod 2%). 

i.e. U = (r/s)2% where r, s E N*, (r < s) are irreducible. Thus 

(5.21) 

for a Bernoulli product, and 

where 

+sinhusin(2rp)sin (5.23) 

for a Markovian product. 
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6. One-parameter family of products: an example 

One may wonder if a limit procedure may permit the computation of y in the elliptic case 
for irrational U from the corresponding formulae (5.21) or (5.23). when U is rational. 

More generally, the continuity of the largest Lyapunov exponent as a function of the 
amplitude of the disorder in disordered sysrems is known to be an important issue. In 
this section, we illustrate the results of the previous sections by giving an example where, 
indeed, y is a discontinuous function of a parameter a. 

We consider the family [P,(a) = ( A  ,B(ol) , PI , p z ) .  a E Rt*, PI > 0 , p2 > 0) of 
infinite Markovian products of the singular matrix A = (A 8) and a family B(a) of matrices, 
depending on a parameter a. PI and p2 are the transition probabilities defined by (2.1). 

R Limo and M Rahibe 

If PI + p i  = 1, then we recover the case of a Bernoulli product. 
B(a) is defined by 

where rp = -j't/4, U > 0 is a fixed parameter; and p =ea with a E Rf'. 
The condition bll(a) = 0 gives us 

a = a, = -Argch(coth(nu)) 

and ~ ( a , )  = -W. 
Now for all 01 E R+*, we define 

PIP2 - I )  f(d = Y ( 4  = - p 2  U O +  - 
PI +P2 PI +PZ 

Since the series in  (5.3) is summable, then f ( a )  is defined and continuous 
But since, for a fa, ,  we have 

Y ( U )  = fQ) 
We obtain 

(6.3) 

(6.4) 

for all n E RI'. Thus y(a) is a discontinuous function of a, for each a = a,, n E RI, 

7. Concluding remarks 

To conclude, we have been able to compute explicit formulae for the Lyapunov exponents 
of some infinite products of random matrices, a task previously performed only in a few 
cases [lo, 111. 

Since we deal with products constructed with two different matrices, it was natural to 
generalize Pincus formula [equation (2.6) of 131, to the more general case of Markovian 
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distribution. This is the content of (2.7). It is seen from these two formulae, (2.6) and 
(2.7), that in order to achieve the computation of the Lyapunov exponent, the knowledge 
of the first entry of all integer powers of the matrice B is sufficient. This is done using 
a special form of E ,  defined in (4.1). 'we then compute the E", n > I ,  and therefore the 
corresponding entries bl l (n) ,  in different cases: B being a hyperbolic (symplectic or not), a 
parabolic or an elliptic matrix. For each of these cases, the formulae (2.6) and (2.7) allow 
us to get an explicit series for the Lyapunov exponent. 

For the hyperbolic, as well as parabolic case, we get exponentially fast convergent 
series. Instead, the corresponding sum for the elliptic matrix leads to a series for which the 
rate of convergence is related to arithmetic properties of the eigenvalues of B. The case of 
rational eigenvalues give rise, of course, to a finite sum. 

Finally, we show how, in the last case (elliptic matrix), there is no continuity 
arguments allowing us to approach the Lyapunov exponent for irrational eigenvalues by 
the corresponding exponents of rational approximations. 
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